
Paper 189-27

PROC TABULATE: Doin’ It in Style!

Ray Pass, Ray Pass Consulting, Hartsdale, NY
Sandy McNeill, SAS, Cary, NC

Abstract
The advent of the SAS® Output Delivery System (ODS to
its friends) has turned SAS reports from machine-
generated, black & white monospace bores into people-
produced, productive and reader-friendly information
displays. One of the main principles underlying ODS is
the use of Table and Style definitions (also known as
Table and Style templates). Most procedures have a
standard output layout structure and rely on their Table
and Style definitions to govern the cosmetic or stylistic
appearance of their tables. Certain procedures (REPORT,
TABULATE, etc), however, by the very nature of their
complete structural customizability, do not rely on fixed
external table definitions. For these procedures, stylistic
customizations are performed through the use of the
STYLE option, an ODS concept which is integrated into
the heart of the procedures' syntax. This presentation will
demonstrate the use of STYLEs in the TABULATE
procedure.

Introduction
Prior to Version 8 (actually Version 7) of the SAS
System, the only form of output available from PROC
TABULATE was the listing file in the Output Window.
The output was produced in SAS Monospace font with
form characters (usually dashes) used for overlining and
underlining. This was the acceptable (and in fact the
only) way to bring attention to summary or total lines.
There was no way to highlight any of the rows, columns
or cells of the output. As Version 8 was released, HTML
output was gaining huge popularity as the choice of
medium for sharing information – reports, documents,
charts. In the HTML world, monospace, fixed fonts were
no longer preferred and it was now possible to use
proportional fonts, colors, different font sizes, bolding and
italics to bring attention to areas of reports that needed
more attention from the reader. Version 8 contained the
first production release of the Output Delivery System
(ODS). One of the main features of ODS is the ability to
produce output from all BASE procedures in alternate
formats (known in ODS as destinations). One of the
original ODS destinations, in addition to the default
LISTING destination, was HTML. Output sent to this
destination was rendered as HTML-tagged output suitable
for viewing in HTML browsers.

Most BASE procedures follow certain fairly rigid
structural guidelines in terms of the overall layout of the
results, and the design of the layout is fairly consistent
from run to run. All UNIVARIATE output for example
follows a basic blueprint. This was not, however, possible
with certain reporting procedures (REPORT,

TABULATE, PRINT, etc) because of the infinite amounts
of final data layouts that could be created depending on
many data factors including variables used and reporting
statistics chosen, as well as other design considerations.
Therefore, while standard codified aspects of most
procedure output could be individually customized via
ODS and its accompanying TEMPLATE procedure, this
was not possible for the reporting procedures because of
the lack of standard replicable design features. To
compensate for this lack of individual customizability, a
system of STYLE formatting was made available for use
in REPORT and TABULATE coding (now available in
PRINT as well) which provided the ability to individually
customize almost all design aspects of the procedure
output.

This presentation will illustrate some of the many different
features of ODS STYLEs as implemented in PROC
TABULATE. This will be done through a series of
examples, each using the same source data set. This data
set, a subset of SASHELP.PRDSAL3, contains fictitious
actual and predicted sales for the years 1997 and 1998 for
the states or provinces of three countries – Mexico,
U.S.A., and Canada. The examples will start off very
simply and then build upon each other by adding or
changing features until the final example, which will be a
culmination of these features. Let’s get started with the
code needed to create the data set used throughout.

data tabhow;

set sashelp.prdsal3(keep=country state
quarter year month
actual predict);

where (country='U.S.A.'
and (state='North Carolina'

or state='New York'
or state='California'))

or country='Canada'
or country='Mexico';

run;

MakeData Code

 Example 1 – Plain old HTML
This first example creates the basic table that we will be
working with throughout the rest of the paper. The code
for the report is as follows, with comments after the code.
The output for all examples can be found at the end of the
paper.

title1 'Example 1 - Simple Tabulate HTML';
*--;
ods listing close;
ods html file = "tabhow1.htm";
*--;
proc tabulate data=tabhow;

class country state year;
var actual predict;

2

table country * (state='State/Province'
all='** Whole Country **'),

year='Sales per Year' *
(actual ='Actual'
predict='Predicted') *
sum=' ' * f=comma9.0

/ box='Country by State by Year' ;
run;
*--;

ods html close;
ods listing;
Example 1 Code

In addition to the actual and predicted sales values for
each of the years for the countries, we also have an ALL
row which captures the total actual and predicted sales
values. The output is sent to the ODS HTML destination
via two simple ODS statements:

1) ODS HTML FILE = 'tabhow1.htm'; – this
statement defines the HTML output file to which
the output will be written,

2) ODS HTML CLOSE; - this statement closes the

output file and is necessary before the output is
available for browsing.

The ODS LISTING CLOSE; and ODS LISTING;
statements, while not necessary for the functionality of the
ODS HTML destination routing, are usually an excellent
addition to all ODS coding. They simply turn off, and
then turn back on, the default ODS LISTING destination
to conserve resources.

A few things should be noticed as you look at the report
output: 1) the report is rather plain, 2) it is difficult to
discern the ALL rows from the rest of the rows, 3) it is
easy to confuse one country's values with another . These
concerns will be addressed in the following examples.

Example 2 – STYLE on the HTML statement
In this example we start working on the appearance of the
report. The only thing we will do here is to change the
overall style that is used for the output.

title 'Example 2 - Add Style to ODS HTML
Statement';
*--;
ods listing close;
ods html file = "tabhow2.htm"

style = sasweb;
*--;
proc tabulate data=tabhow;

class country state year;
var actual predict;

table country * (state='State/Province'
all='** Whole Country **'),

year='Sales per Year' *
(actual ='Actual'
predict='Predicted') *
sum=' ' * f=comma9.0

/ box ='Country by State by Year';

run;
*--;
ods html close;
ods listing;
Example 2 Code

The only difference between this example and Example 1
is the STYLE option on the HTML statement. When a
STYLE option is used on a global ODS statement which
opens a destination, the style specified (and its elements)
are used until the destination is closed.

In the first example, we were actually using the
DEFAULT style even though we did not explicitly code
it. When using the HTML destination, this is the STYLE
which is used by default.

In Example 2, we use the SASWEB style. This style
corresponds to the SASWEB style template which is
located in the STYLES directory of the first readable
itemstore that contains this style template. As long as the
style resides in the STYLES directory, you can omit
specifying "STYLES." before the style name, since that is
the default. It’s just like specifying/not specifying
“WORK” as the default libref when referring to temporary
SAS data sets. If this is unclear at the moment, don’t
worry. It’s a base concept in ODS and TEMPLATES, but
is not critical to where we are going.

Notice when comparing the output from Example 1 to that
for Example 2 that the SASWEB style not only affects the
color of different areas of the report, but also changes the
font and font size that is used throughout the report. If
you want stylistic changes to be in effect for many reports,
the best place to put those changes is in a style template
which you can then simply call from report to report. But
once again, this is a bit peripheral to the topic at hand.

Example 3 – STYLE on the TABULATE statement
Now that we have seen how to apply a style to an entire
report (and one that could be used for many reports), the
next task is to see how we can make changes to colors,
fonts, or other stylistic attributes for just one report. The
method to use is the STYLE option, but not the same
STYLE option as we saw on the ODS global statement in
Example 2. The goal of the rest of this paper is to
examine different ways that the STYLE option can be
used within a specific PROC TABULATE. Let's take a
look at the code for Example 3 and then we'll discuss the
first use of the STYLE option, namely on the
TABULATE statement.

title 'Example 3 - Add Style to TABULATE
Statement';
*--;
ods listing close;
ods html file = "tabhow3.htm"

style = sasweb;
*--;
proc tabulate data=tabhow

3

style=[background=beige];
class country state year;
var actual predict;

table country * (state='State/Province'
all='** Whole Country **'),

year='Sales per Year' *
(actual ='Actual'
predict='Predicted') *
sum=' ' * f=comma9.0

/ box ='Country by State by Year';
run;
*--;
ods html close;
ods listing;

Example 3 Code

The STYLE= option has the following general syntax:

STYLE<(location(s)>=<style-element-name>

<[attribute1 = attribute-value-1
attribute2 = attribute-value-2

. . .
attribute3 = attribute-value-3]>

Note: You can use either square brackets ([and]) or
braces ({ and }).

The optional LOCATION identifier tells where in the
report the style should be applied. Since PROC
TABULATE does not use LOCATION in the STYLE
option, we won't discuss it here. PROC REPORT and
PROC PRINT however do use this feature and this is
discussed in their documentation chapters.

The STYLE-ELEMENT-NAME refers to the name of a
style element from the current style template in use. This
is beyond the scope of this paper, but if you want to learn
more about style elements, the place to go is the SAS
Procedures Guide, Version 8 (online or hardcopy.)

The last part(s) of the STYLE option are pairings of
attribute names for those style attributes that you want to
set, and the values that you want to assign to them. The
PROC TEMPLATE documentation (in The Complete
Guide to the SAS Output Delivery System, Version 8), as
well as the aforementioned V8 SAS Procedures Guide,
contain lists of attributes and their possible values.

When a FORMAT option is used on the TABULATE
statement, the format specified is applied to the data cells,
as opposed to row or column headers. This same rule also
applies when a STYLE option resides on the TABULATE
statement – the named style is applied to the data cells of
the report.

On the TABULATE statement, we see the code
STYLE=[BACKGROUND=BEIGE]. There is no style
element name specified and only one style attribute and
value. Since the STYLE option on the TABULATE
statement affects data cells, the background color of data

cells will be the color beige.

Example 4 – STYLE on CLASS and CLASSLEV
statements

Now that we are familiar with the basic syntax and
operation of the STYLE option, let's use this option with
other PROC TABULATE statements. In this example,
we will use the STYLE option on both the CLASS and
CLASSLEV statements. Let's take a look at the code first.

title 'Example 4 - Add Style to CLASS and
CLASSLEV Statements';
*--;
ods listing close;
ods html file = "tabhow4.htm"

style = sasweb;
*--;
proc tabulate data=tabhow

style=[background=beige];
class country state;
class year / style=[foreground=black];
classlev year / style=[foreground=black];
var actual predict;

table country * (state='State/Province'
all='** Whole Country **'),

year='Sales per Year' *
(actual ='Actual'
predict='Predicted') *
sum=' ' *f=comma9.0

/ box ='Country by State by Year';
run;
*--;
ods html close;
ods listing;

Example 4 Code

In this example we chose to have the column spanning
header for the YEAR variable ('Sales Per Year') and the
actual values of the YEAR variable (1997, 1998)
displayed in black instead of the default white (this default
comes from the style element HEADER in the style
template that we are using which is STYLES.SASWEB).
The first thing to understand is that we need to use the
FOREGROUND attribute since we want to change the
color of the text (we would use the BACKGROUND
attribute to change the background color of the cell.) The
second thing to figure out is where to place the STYLE
options. Since we want to change the label of the YEAR
variable, we place a STYLE option on the CLASS
statement for YEAR. Notice that by using PROC
TABULATE’s support of multiple CLASS statements for
different categorizing variables, we can apply different
styles (or none at all) to different class variables. In this
example, COUNTRY and STATE are not given styles,
and the text color for the YEAR variable label is set to
black.

OK, so we’ve changed the style on the CLASS statement
for the YEAR variable, but that only affects the label for
the variable itself ('Sales Per Year'), and not the actual
values of the variable, 1997 and 1998. To do this, we

4

need to use the STYLE option on the CLASSLEV
statement for YEAR. This CLASSLEV statement was
created for just this purpose – to access the class level
values for a particular class variable. Just as we can have
multiple CLASS statements, we can also have multiple
CLASSLEV statements to allow different class variables
to be styled differently. In this example, however, we are
only stylizing the class levels for the variable YEAR, so
we have one CLASSLEV statement for that variable, with
the same style option as we had on the CLASS statement
for YEAR. Unlike CLASS statements which must be
present for every categorizing variable in the run,
CLASSLEV statements are only needed for those
variables for which you wish to make variable-level style
changes.

Example 5 - STYLE on the BOX option
One area that is slightly removed from the variables and
their statistics in the output is the BOX area. This area
can nevertheless be stylized. Here is the code:

title 'Example 5 - Add Style to BOX option on
TABLE Statement';
*--;
ods listing close;
ods html file = "tabhow5.htm"

style = sasweb;
*--;
proc tabulate data=tabhow

style=[background=beige];
class country state;
class year / style=[foreground=black];
classlev year / style=[foreground=black];
var actual predict;

table country * (state='State/Province'
all='** Whole Country **'),

year='Sales per Year' *
(actual ='Actual'
predict='Predicted') *
sum=' ' * f=comma9.0

/ box=[label='Country by State by Year'
style=[background=beige

foreground=black
font_size=3]];

run;
*--;
ods html close;
ods listing;
Example 5 Code

Setting a style for the BOX area only slightly complicates
the process of just setting a string to appear there. Instead
of just specifying the string, as in BOX=’string’, you have
to enclose the string (LABEL=) in brackets as well as the
style. Remember that the STYLE= is enclosed in
brackets, within the outer BOX brackets. In our example,
we set a label as well as a style with three attributes:
BACKGROUND, FOREGROUND and FONT_SIZE.

Example 6 - STYLE on VAR statements
OK, we’ve colored CLASS variable column headers with

STYLE on CLASS and CLASSLEV statements (the same
can obviously be done with row CLASS variables) and
we’ve done the BOX area. Now we come to the rest of
the table, the guts, the data cells. The task at hand in this
example and the next is to differentially color the
ACTUAL and PREDICT columns so that they can be
more readily separated by eye when viewing the table.
We’ll do just the headers (‘Actual’, ‘Predicted’) in
Example 6 and get to the data cells for these columns in
Example 7. Here is the code for Example 6:

title 'Example 6 - Add Style to VAR Statement';
*--;
ods listing close;
ods html file = "tabhow6.htm"

style = sasweb;
*--;
proc tabulate data=tabhow

style=[background=beige];
class country state;
class year / style=[foreground=black];
classlev year / style=[foreground=black];
var actual /

style=[background=lightgreen
foreground=black];

var predict /
style=[background=lightcyan

foreground=black];

table country * (state='State/Province'
all='** Whole Country **'),

year='Sales per Year' *
(actual ='Actual'
predict='Predicted') *
sum=' ' * f=comma9.0

/ box=[label='Country by State by Year'
style=[background=beige

foreground=black
font_size=3]];

run;
*--;
ods html close;
ods listing;
Example 6 Code

Just as we can have separate CLASS and CLASSLEV
statements for separate CLASS variables or sets of
variables, we can also have separate VAR statements.
The structure of the STYLE syntax on the VAR statement
is just like that of the CLASS or CLASSLEV statement.
In our example, we are giving a black foreground to both
ACTUAL and PREDICT, but we are giving them
different background colors, lightgreen for ACTUAL and
lightcyan for PREDICT. This is the first step towards
color-coding these columns. Let’s go on to Example 7
and see the next step.

Example 7 – STYLE on TABLE statements
In Example 1, we saw that placing a STYLE option on the
PROC TABULATE statement affects the style of all of
the data cells. The task is now to style the cells
differentially, depending on the VARs that are being
displayed. But first, the code:

5

title 'Example 7 - Add Style to the TABLE
Statement';
*--;
ods listing close;
ods html file = "tabhow7.htm"

style = sasweb;
*--;
proc tabulate data=tabhow

style=[background=beige];
class country state;
class year / style=[foreground=black];
classlev year / style=[foreground=black];
var actual /

style=[background=lightgreen
foreground=black];

var predict /
style=[background=lightcyan
foreground=black];

table country * (state='State/Province'
all='** Whole Country **'),

year='Sales per Year' *
(actual='Actual' *

[style=[background=lightgreen]]
predict='Predicted' *

[style=[background=lightcyan]]) *
sum=' ' * f=comma9.0

/ box=[label='Country by State by Year'
style=[background=beige

foreground=black
font_size=3]];

run;
*--;
ods html close;
ods listing;

Example 7 Code

You add styles to individual variables by inserting STYLE
code in the crossings for the individual variables. In the
code above, the variable YEAR in the column dimension
is crossed with the variables ACTUAL and PREDICT.
Then the variable ACTUAL is crossed with
[STYLE=[BACKGROUND=LIGHTGREEN]] and the
variable PREDICT is crossed with
[STYLE=[BACKGROUND=LIGHTCYAN]]. Then,
both are crossed with SUM=’‘*FORMAT=COMMA9.0.

We now have the entire columns color-coded, not only the
headings. You can see how much easier it is to compare
the ACTUAL or PREDICT values between the two years,
1997 and 1998.

Example 8 – User-defined formats as STYLE
attribute values & PARENTing

We’ve seen that we can style column headers and data
cells under the headers – now let’s switch gears a bit and
see what we can do with the rows. In these next two
examples, we are going to first apply color bands to the
row headers, and then carry these colors across the entire
rows. Let’s take a look at the code for Example 8:

title1 'Example 8';
title2 '- Add Color Bands to the Major Row
Variable (COUNTRY) Using Format';
title3 '- Add Color Bands to the Other Row

Variable (STATE) Using <PARENT>';
title4 '- Add Style to ALL Keyword Using
<PARENT>';
*--;
ods listing close;
*--;
proc format;

value $ctryfmt 'U.S.A.' = 'navyblue'
'Canada' = 'CX23d8FF'
'Mexico' = 'lightblue';

run;
*--;
ods html file = "tabhow8.htm"

style = sasweb;
*--;
proc tabulate data=tabhow

style=[background=beige];
class country state;
class year / style=[foreground=black];
classlev country /

style=[background=$ctryfmt.];
classlev state /

style=<parent>[foreground=black];
classlev year / style=[foreground=black];
var actual /

style=[background=lightgreen
foreground=black];

var predict /
style=[background=lightcyan

foreground=black];

table country * (state='State/Province'
all='** Whole Country **'),

year='Sales per Year' *
(actual='Actual' *

[style=[background=lightgreen]]
predict='Predicted' *

[style=[background=lightcyan]]) *
sum=' ' * f=comma9.0

/ box=[label='Country by State by Year'
style=[background=beige

foreground=black
font_size=3]];

keyword all / style=<parent>;
run;
*--;
ods html close;
ods listing;

Example 8 Code

There are two new features of importance that we have
introduced in this example. First of all, we are using a
user-defined format as an attribute value in a STYLE
attribute pairing. We defined the format $CTRYFMT.
and then used it as the background color in the STYLE
option on the CLASSLEV statement for COUNTRY.
This is an efficient and flexible method which creates the
potential for powerful data-dependent processing which
can eliminate rigid hard-coding, but let’s not go too far
astray.

The other new feature introduced here is that of parenting.
We now have the colors that we want set up for the
different countries, and we would like to have the rest of
each row be the same color as that of its country. Moving
along to the right, the classlevel cell for each state is the
next part of each row to be colorized. The question is,

6

How do we assign a color to the classlevel cell for each
state when we want it to be the same color as its parent
country, but the country is obtaining its value from a user-
defined format? The answer is the new <PARENT>
syntax. Let's examine the STYLE option on the
CLASSLEV statement for STATE in the code above,
STYLE=<PARENT>[FOREGROUND=BLACK]. This
STYLE option first sets the style for the classlevel cells of
STATE to be the same as that of its parent, COUNTRY.
It is said to inherit the style. There are a set of rules for
TABULATE as to exactly where inheritance comes from,
and these are outlined in the documentation. Once the
base style attributes are in place through inheritance, they
can be over-ridden, as is the case here with
FOREGROUND. This attribute is set to BLACK here.
Notice that we also used <PARENT> for the keyword
ALL. But we are not done with rows yet.

Example 9 – <PARENT> on the TABLE statement
All that is left to do to our rows is to have them display
with the same color as their countries and states. First the
code:

title1 'Example 9 - Add <PARENT> to the
crossing';
title2 ' - Data Cells Nows Inherit from
their parent, STATE';
*--;
ods listing close;
*--;
proc format;
value $ctryfmt 'U.S.A.' = 'navyblue'

'Canada' = 'CX23d8FF'
'Mexico' = 'lightblue';

run;
*--;
ods html file = "tabhow9.htm"

style = sasweb;
*--;
proc tabulate data=tabhow

style=[background=beige];
class country state;
class year / style=[foreground=black];
classlev country /

style=[background=$ctryfmt.];
classlev state /

style=<parent>[foreground=black];
classlev year / style=[foreground=black];
var actual /

style=[background=lightgreen
foreground=black];

var predict /
style=[background=lightcyan

foreground=black];

table country=''*(state=''
all='** Whole Country **')

* [style=<parent>],
year='Sales per Year'
* (actual ='Actual'

predict='Predicted')
* sum=' ' * f=comma9.0

/ box=[label='Country by State by Year'
style=[background=beige

foreground=black
font_size=3]];

keyword all / style=<parent>;
run;
*--;
ods html close;
ods listing;

Example 9 Code

In order to get the rows to display with the same styles as
their parents, which in this case are those of STATE, we
had to change the inheritance of the data cells. First we
added a STYLE to the crossing of the row dimension
variables (COUNTRY * STATE), and used <PARENT>
in that style. We also had to remove the styles in the table
crossing for our column dimension variables (YEAR *
(ACTUAL PREDICT)). Had we not done this, these
column dimension styles would have taken precedence
over the row dimension styles in the line of inheritance.
As mentioned earlier, there are inheritance rules which do
apply and which must be accounted for in creating the
desired display. For good measure, we also blanked out
the labels for COUNTRY and STATE, although this was
not all necessary.

Example 10 – adding images and other features
In this next example, we add an image to each
COUNTRY cell. We also make use of another powerful
style attribute. Here is the code:

title1 'Example 10 - Add Images and other
Features';
*--;
ods listing close;
*--;
proc format;

value $ctryfmt 'U.S.A.' = 'navyblue'
'Canada' = 'CX23d8FF'
'Mexico' = 'light blue';

value $ctrybr 'U.S.A.' = '
U.S.A.'
'Canada' = '
Canada'
'Mexico' = '
Mexico';

value $ctryflg 'U.S.A.' = "USFlag2.gif"
'Canada' = "CanadaFlag2.gif"
'Mexico' = "MexicoFlag2.gif";

run;
*--;
ods html file = "tabhow10.htm"

style = sasweb;
*--;
proc tabulate data=tabhow

style=[background=beige];
class country state;
class year / style=[foreground=black];
classlev country /

style=[preimage=$ctryflg.
protectspecialchars=off
background=$ctryfmt.];

classlev state /
style=<parent>[preimage=''

foreground=black];
classlev year / style=[foreground=black];
var actual ;
var predict ;

7

table country=''*(state=''
all='** Whole Country **')

* [style=<parent>],
year='Sales per Year'
* (actual ='Actual'

predict='Predicted')
* sum=' ' * f=comma9.0

/ box=[label='Country by State by Year'
style=[background=beige

foreground=black
font_size=3]];

keyword all / style=<parent>[preimage=''];

format country $ctrybr.;
run;
*--;
ods html close;
ods listing;

Example 10 Code

Up to now, we have used the style attributes
FOREGROUND, BACKGROUND, and FONT_SIZE,
but there are many more. The two new ones used here are
PREIMAGE and PROTECTSPECIALCHARS. The
PREIMAGE attribute allows you to insert an image (we
are using gifs in this example) before the text in any cell.
There is a matching POSTIMAGE attribute and the
syntax/usage is the same. In this example, we are adding
an image of the flag of each country into the cell
preceding the country’s name. The method we are using
is the same as we did with the country background colors
– we are using a user-defined format. This time, however,
we are specifying images in a format ($CTRYFLG.),
instead of colors. The resulting attribute on the
CLASSLEV statement for the COUNTRY variable,
PREIMAGE=$CTRYFLG. accomplishes the task.

If we left the attributes as above, we would have the flag
image preceding the country name, all on one line in each
cell. In order to get the name to wrap under the image, we
use another technique, and another style attribute. We
create another format ($CTRYBR.) which concatenates
the HTML line break tag
 to the country name
value. The name for Canada for example, will now be
output as ‘
Canada’. We then use the attribute
pairing PROTECTSPECIALCHARS=OFF on the
CLASSLEV statement for COUNTRY to tell SAS not to
protect the characters < and > (& is also not protected
with this pairing) and to treat them as HTML tags. The
syntax is perhaps a little counterintuitive, but you’ll get
used to it.

So far, so good, but we’re not through here yet.
Remember that we are parenting the styles for
COUNTRY into STATE via a CLASSLEV statement for
STATE, and those for STATE into the data cells in the
TABLE statement. If we stopped here, the preimages for
COUNTRY would flow into all the STATE and data
cells. In order to avoid this, we have to provide a null
PREIMAGE attribute (PREIMAGE=’’) for STATE. We

do not have to do the same in the TABLE statement
because the null value for the data cells will flow through
from their parent, STATE.

The last piece of work to be done here is to add the same
null preimage value to the style for the ALL keyword, as
this also inherits from COUNTRY.

Example 11 –Traffic Lighting
One very powerful method in creating information
displays is the technique of automatically calling visual
attention to values in a report if those values exceed or fall
below certain established maximum or minimum values,
or fall within pre-specified ranges. The values and ranges
can either be pre-determined and hard-coded, or can be
created in data-driven manners. This criteria-dependent
highlighting is usually referred to as traffic lighting. This
last example will demonstrate simple hard-coded traffic
lighting with our data. We are going to first enhance the
original data set to create a new variable to which we will
then apply the technique. As is usual, first the code:

data tabhow2;

set sashelp.prdsal3(keep=country state
quarter year month
actual predict);

where(country='U.S.A.'
and (state='North Carolina'

or state='New York'
or state='California'))

or country='Canada'
or country='Mexico';

diffpc = (actual-predict);
run;
*--;
title 'Example 11 - Add Traffic Lighting';
*--;
ods listing close;
*--;
proc format;

value $ctryfmt 'U.S.A.' = 'navyblue'
'Canada' = 'CX23d8FF'
'Mexico' = 'light blue';

value difffmt low - <-10 = 'red'
-10 - 0 = 'lightpink'
other = 'beige';

run;
*--;
ods html file = "tabhow11.htm"

style = sasweb;
*--;
proc tabulate data=tabhow2

style=[background=beige];
class country state;
class year / style=[foreground=black];
classlev year / style=[foreground=black];
var actual /

style=[background=lightgreen
foreground=black];

var predict /
style=[background=lightcyan

foreground=black];
var diffpc /

style=[background=lightyellow

8

foreground=black];

table country * (state='State/Province'
all='** Whole Country **')

* [style=<parent>],
year='Sales per Year'
* (actual='Actual'

* sum='' * f=comma9.0
* [style=[background=lightgreen]]
predict='Predicted'
* sum='' * f=comma9.0
* [style=[background=lightcyan]]
diffpc ='% Difference'
* pctsum<predict>='' * f=7.2
* [style=[background=difffmt.]])

/ box=[label='Country by State by Year'
style=[background=beige

foreground=black
font_size=3]];

run;
*--;
ods html close;
ods listing;

Example 11 Code

Traffic lighting is easily achieved in PROC TABULATE
by creating user-defined formats and then by using these
formats as attribute values in STYLE attribute pairings.
This is the exact same method that we used for applying
different color backgrounds to the different countries.
This time, however, instead of the formats having
individual values (such as the country names), we use
ranges of values and then associate a color name with
each range. We can then use the formats as
BACKGROUND attributes.

Before we run the TABULATE, we will create an
alternate to the original TABHOW dataset. This time, we
create a new variable DIFF, which is simply the difference
between predicted and actual values. This will be the
basis for the variable to which we will apply the traffic
lighting in the output. In the TABULATE code, we are
actually going to display the percentage of this calculated
value DIFF to the PREDICT value by using a PCTSUM
statistic. We want to be able to visually recognize major
and minor negative percent differences. In order to
highlight these values, we create a new format,
DIFFFMT.. This equates the range of LOW (the lowest
number found in the data) to LESS THAN –10 with the
color RED, and the range of -10 to 0 with the color
LIGHTPINK. All other numbers are equated with the
color BEIGE. This is the format that we will use in the
output table with the statistic based on DIFF.

Since we will be displaying three different variables,
ACTUAL, PREDICT and DIFF, with different output
formats and with different STYLES, the TABLE
statement has to deal with each of them separately.
ACTUAL and PREDICT are not changed from previous
examples – they will be displayed using a SUM statistic, a
COMMA9.0 format and a fixed background color

(LIGHTGREEN for ACTUAL and LIGHTCYAN for
PREDICT.) The new variable DIFF, however, will be
displayed using a PCTSUM statistic with PREDICT as
the denominator, an output format of 7.2 and the newly
created output format DIFFFMT. as the attribute value for
the BACKGROUND attribute. Since the combinations of
label, output format and STYLE is different for each
variable, each one gets its own fully displayed crossing.

One warning with using formats and traffic lighting: you
must make sure that the entire range of values is covered
in your format statement. If some values are not covered,
you may see unpredictable results with the style attribute
for which you are using the format. In this example, we
cover all possible values by using the OTHER parameter
in building our output format.

Conclusion
PROC TABULATE has been around since the mid
eighties and has proven to be a powerhouse in the field of
summary data reporting. The advent of the Output
Delivery System with Version 8 has greatly enhanced the
ability to create data reports from most procedures that are
visually compelling as well as data-rich. However, the
marriage between ODS and TABULATE has not been as
automatic as it has been with other, fixed-layout
procedures. This is fully understandable because of the
ability of TABULATE to produce an infinite amount of
output data layouts. However, by using the STYLE
option and its myriad of formatting features in your PROC
TABULATE code, you can achieve the same amount of
power and elegance as the other procedures, if not more
so.

Acknowledgements
SAS is a registered trademark of the SAS Institute Inc.,
Cary, NC, USA.

Author Contact Information
The authors of this paper can be contacted as follows:

Ray Pass
Ray Pass Consulting
5 Sinclair Place
Hartsdale, NY 10530
Voice: (914) 693-5553
eFax: (914) 206-3780
e-mail: raypass@att.net

Sandy McNeill
SAS Institute
SAS Campus Drive
Cary, NC
Voice: (919) 531-5453
Fax: (919) 677-4444
e-mail: sandy.mcneill@sas.com

9

10

